
ReTeLL (December 2015), Vol. 15

Building a Price Predictor for an Auctioning Website

C. Muthu
1
 and M. C. Prakash

2

1
Associate Professor, Dept of Statistics, St. Joseph‟s College, Tiruchirappalli

2
PG Student, Bharathidasan Institute of Management, Tiruchirappalli

1. Introduction

The Techniques that are related to Big Data Analytics have great impact on the

productivity and profitability of big Organizations
[1]

. The Hadoop ecosystem is

now extensively used for successfully implementing the advanced statistical

algorithms on the big data
[2].

 The preferable approach for determining the price

predictor for an item is to find a few of the most similar items and assume that

the prices will be roughly the same. By finding a set of items similar to the item

that interests us, the K-nearest Neighbours algorithm can average their prices

and make a guess at what the price should be for this item.

2. Data needed for Study

Shalom InfoTech is at present developing an Auctioning Module for its UK-

based Client Sherwood Tinnings. The data needed for predicting the prices of

Artifacts auctioned by Sherwood Tinnings through its website were collected

from its customers by way of conducting an online survey. The data thus

collected were made available by Shalom InfoTech for analyzing through an

XML-based API. This API was used to perform item searches and get detailed

item information. The XML-based API provided by Sherwood Tinnings

website required sending of values of appropriate parameters in XML format

for every request. The API returned an XML document that could be parsed

with the parseString function from the minidom library. The Python function

sendRequest was written to open a connection to the server, post the

parameters‟ XML and parse the result. The function sendRequest was added to

Sherwoodpredict.py. As DOM parsing was found to be a tedious process, a

simple convenience method named getSingleValue was created, which easily

found a node and then returned its contents.

3. Performing a Search

Performing a search involved the creation of the XML parameters for the

GetSearchResults API call and passing them to the previously defined

sendRequest function. The XML parameters were in the following form:

<GetSearchResultsRequest xmlns = “urn:sherwood:apis :
 sherwoodBaseComponents”>
<RequesterCredentials> <sherwoodAuthToken> token
</sherwoodAuthToken> </RequesterCredentials>
<parameter1> value </parameter1>
<parameter2> value </parameter2>
</GetSearchResultsRequest>

ReTeLL (December 2015), Vol. 15

The following two parameters were passed to the GetSearchResults API call:

 i) Query: This is a string containing the search terms. Using this parameter is

exactly like typing in a search from the Sherwood Tinnings home page.

 ii) Category ID: This is a numerical value specifying the category we wish to

search. Sherwood Tinnings has a large hierarchy of categories, which we

can request with the Getcategories API call. This can be used alone or in

combination with Query.

The Python doSearch function took these two parameters and performed a

search. It then returned a list of the item IDs, which were used with the GetItem

call, along with their descriptions and current prices. The doSearch function

was added to sherwoodpredict.py.

In order to use the category parameter, a function was needed to retrieve the

category hierarchy. This was another straight forward API call, but the XML

file for all the category data was found to be very large, took a longtime to

download, and was very difficult to parse. Because of this reason, the category

data were limited to the Statue category, for which the price is to be predicted.

The getCategory function took a string and a parent ID and returned all the

categories containing that string within that top-level category. This function

was added to sherwoodpredict.py. This function was subsequently used in the

following Python session in order to list the statue category items:

 >>> import sherwoodpredict
 >>> statues = sherwoodpredict.doSearch (‘statue’, categoryID = 511480)
 >>> statues [0 : 10]

4. Getting Details for an Item

The listing in the above search results gave the title and id, and it was possible

to extract details such as the metal with which the statue was made and the year

in which the statue was made from the XML text of the title. Sherwood

Tinnings website also provided attributes specific to different item types. Each

statue was listed with attributes like statue‟s age, its metal and level of

craftsmanship. In addition to these details, it was also possible to get details

such as the seller‟s rating, the number of bids, and the starting price.

In order to get the above details, an API call was made to GetItem, passing the

item‟s ID as returned by the doSearch function. To do this, a function called

getItem was added to sherwoodpredict.py. This function retrieved the item‟s

XML using the sendRequest function and then parsed out the interesting data.

Since attributes were different for each item, they were all returned in a

dictionary. This function was used to display the attributes of the category

statues [7][0].

 >>> reload (sherwoodpredict)
 >>> ebeypredict.getItem (statues [7][0]

ReTeLL (December 2015), Vol. 15

 {‘attributes’ : { u ‘12’ : u ‘2’, u ‘25710’ : u ‘India’ u ‘26444’ : u ‘45’,
 u ‘26446’ : u ‘Bronze’}, ‘price’ : u ‘515.0’, ‘bids’ : ‘u ‘28’, ‘feedback’ : u ‘2797’,
 ‘title’ : u ‘Lord Nataraja Statue-India’
 }

From the above output, it was known that the attribute 26444 represented

statue‟s age, 26446 represented metal type, 12 represented level of

craftsmanship and 25710 represented country of origin. The seller rating, the

number of bids, and the starting price, which were provided by the above

output, helped us to build the required Price Predictor.

5. Building a Price Predictor

The Python function makeStatueDataSet was made to call the doSearch

function to get a list of statues, and then request each one individually. Using

the attributes determined in the previous section, the function created a list of

numbers that could be used for prediction, and put data in the structure

appropriate for the K-nearest neighbours (KNN) function named knnestimate,

which would provide the price estimate. The makeStatueDataset function was

added to sherwoodpredict.py.

This function ignored any items that did not have the necessary attributes.

Downloading and processing all the results took some time, but an interesting

dataset of real prices and attributes was provided. The knnestimate function

acted on this dataset and provided the price estimate,as shown below:

This function ignored any items that did not have the necessary attributes.

Downloading and processing all the results took some time, but an interesting

dataset of real prices and attributes was provided. The knnestimate function

acted on this dataset and provided the price estimate,as shown below:

 >>> reload (sherwoodpredict)
 >>> set! = sherwoodbaypredict.makeStatueDataset()
 >>> numpredict.knnestimate (set1, (40, bronze, 2, India))
 $ 667.89 9999 9999 9998

 References

 1. Jacques Bughin (2016). Big Data, Big Bang?, Journal of Big Data, 3(2),

pp. 1-14.

 2. Muthu, C. and Prakash, M. C. (2015). Impact of Hadoop Ecosystem on Big Data

Analytics, International Journal of Exclusive Management Research - Special

Issue(2015), pp. 88 - 90.

 3. Wes Mckinney (2012). Python for Data Analysis. O‟Reilly Press, USA.

	1.pdf
	RETELL_2015_144.pdf
	RETELL_2015_143.pdf

	2.pdf
	RETELL_2015_144.pdf
	RETELL_2015_143.pdf

	3.pdf
	RETELL_2015_144.pdf
	RETELL_2015_143.pdf

